

Agilent Technologies Infiniium 90000 X-Series Oscilloscopes

Data Sheet

Engineered for 32 GHz true analog bandwidth that delivers

Real-time oscilloscope models from 16 GHz to 32 GHz

Need bandwidth?

When you're deploying leading edge high-speed serial bus designs like FibreChannel, SAS 12 G, or 10 Gb Ethernet KR, jitter matters and picoseconds count. When you're doing spectral analysis of wide-bandwidth RF signals or investigating transient phenomena, bandwidth is critical. You need the most accurate real-time oscilloscope you can get. Agilent Infiniium 90000 X-Series scopes are engineered for **32 GHz** true analog bandwidth that delivers:

- The industry's highest real-time scope measurement accuracy
- The industry's only 30 GHz oscilloscope probing system
- The industry's first application-specific measurement software

32 GHz true analog bandwidth

The quest for higher real-time scope bandwidth involves pushing against the physical limitations of state-of-theart integrated circuit technology. We define true analog bandwidth as performance achieved directly through the hardware of the real-time oscilloscope, and we've achieved breakthrough performance of **32 GHz** with the Infiniium 90000 X-Series. Other vendors, limited to 16 GHz hardware, employ various techniques to boost the bandwidth specification of their scopes. However, these methods introduce noise and distortions that negatively impact measurements.

With the Agilent Infiniium 90000 X-Series oscilloscopes, you get the fastest real-time oscilloscope on the planet with the best measurement accuracy available today.

	Analog bandwidth		Sampl	Sample rate		
Model number	2 channel	4 channel	2 channel	4 channel	depth 4 channel	
DSA-X93204A	32 GHz	16 GHz	80 GSa/s	40 GSa/s	2 Gpts	
DSO-X93204A	32 GHz	16 GHz	80 GSa/s	40 GSa/s	2 Gpts	
DSA-X92804A	28 GHz	16 GHz	80 GSa/s	40 GSa/s	2 Gpts	
DS0-X92804A	28 GHz	16 GHz	80 GSa/s	40 GSa/s	2 Gpts	
DSO-X92504A	25 GHz	16 GHz	80 Gsa/s	40 GSa/s	2 Gpts	
DSA-X92504A	25 GHz	16 GHz	80 Gsa/s	40 GSa/s	2 Gpts	
DSO-X92004A	20 GHz	16 GHz	80 Gsa/s	40 GSa/s	2 Gpts	
DSA-X92004A	20 GHz	16 GHz	80 Gsa/s	40 GSa/s	2 Gpts	
DSO-X91604A	16 GHz	16 GHz	80 Gsa/s	40 GSa/s	2 Gpts	
DSA-X91604A	16 GHz	16 GHz	80 Gsa/s	40 GSa/s	2 Gpts	

Custom front end technology requiring over five years of design effort yields the fastest real-time oscilloscope hardware available today. Capture rise times as fast as 13 ps with confidence.

BW Upgradeable

Buy the performance you need today knowing you have the headroom you need for tomorrow with bandwidth upgradability to 32 GHz

The industry's highest real-time scope measurement accuracy.

When you're designing with faster signals, shrinking eyes and tighter jitter budgets mean that error introduced by your oscilloscope can seriously impact your measurement results. The Agilent Infiniium 90000 X-Series scopes deliver the highest measurement accuracy available by offering the following industry-leading characteristics:

- · Highest true analog bandwidth (32 GHz)
- Lowest oscilloscope noise floor (2.04 mV at 50 mV/div, 32 GHz)
- · Lowest jitter measurement floor (150 fs)

Having the highest analog bandwidth, and lowest noise floor available means better spectral analysis of transients and wide-bandwidth RF signals.

Industry's first 30 GHz oscilloscope probing system.

No matter how good your scope is, if your probes can't operate at sufficient bandwidths your measurements are compromised. The Agilent Infiniium 90000 X-Series scopes offer probing solutions that are up to the tough challenges of high-speed signal capture with the following:

- InfiniiMax III high frequency probes with automatic AC calibration (PrecisionProbe)
- Fully-integrated probe amplifier s-parameter correction
- · The industry's first bandwidth-upgradable probes

Easily isolate signals of interest like this zone qualified view with InfiniiScan software triggering, just one of over 40 application-specific software options

The industry's most comprehensive applicationspecific measurement software.

When time is of the essence, you need tools that can speed true understanding of your signal activity. From serial bus debug and compliance testing to jitter measurements to sophisticated triggering capability, Agilent stays on top of the test standards and your requirements and works to ensure that you get accurate results more quickly. The Agilent Infiniium 90000 X-Series scopes offer the following

- The broadest range of jitter, triggering, analysis and display tools
- Pre-built compliance testing software based on the expertise of our engineers on the standards committees
- Support for emerging technologies including FibreChannel, SAS 12G, or MIPI-NPhy

32 GHz true analog bandwidth of the oscilloscope and 80 GSa/s sample rate provides ultra-low noise

Capture your longest signal with up to 25 ms data using 2 Gpt of acquisition memory at 80 GSa/s.

See your signal more clearly with a 12.1-inch XGA (1024 \times 768) high-resolution color touch screen display

Identify anomalies easily with a 256-level intensity-graded or color-graded persistence display that provides a three dimensional view of your signals

Live indicator shows when the scope is running a long operation.

Remote access through 10/100/1000 BaseT LAN interface with web-enabled connectivity uses ultra-responsive Ultra VNC.

GPIB over LAN provides remote measurements. Optional Infiniium application remote program interface allows application/ compliance software automation. LXI class C compliant.

Removable hard disk drive option is available for added data security.

Optional USB external DVD-RW drive allows you to install your favorite third-party software conveniently and can be used to back up your critical measurement data

Simply press the horizontal delay knob to set the delay value to zero. A zoom button provides quick access to two screen zoom mode.

10 MHz reference clock can be input to or output from the scope to allow precise timebase synchronization with RF instruments or logic analyzers

Dedicated single acquisition button provides better control to capture a unique event

Customizable multipurpose key gives you any five automated measurements with a push of a button. You can also configure this key to execute a script, print/save screen shots, save waveforms or load a favorite setup.

Measure section, including a toggling marker button and a dedicated marker knob, provides quick access to your marker control.

Quick access to fine/vernier control by pressing the horizontal and vertical sensitivity knobs.

Increase your productivity with a familiar Infiniium graphical user interface, including your favorite drag-and-drop measurement icons. Infiniium's analog-like front panel has a full set of controls color-coded to the waveforms and measurements, making your tasks simple.

Three front panel USB 2.0 host ports match your USB keyboard, mouse, and USB memory drive connection for saving setup and data files and screen shots.

An additional four USB 2.0 host ports and a USB 2.0 device port on the back panel. Perfect for extra connectivity including an optical drive. A USB 2.0 device port lets you control the scope and transfer data via a USB 2.0 480-Mbpts connection.

The highest real-time scope measurement accuracy

Whether you're deploying emerging high speed bus technology, identifying spectral content of wide-bandwidth RF signals, or analyzing transient physical phenomena, you need the truest representation of your signals under test. Agilent invested in leading edge technology to bring you the highest real-time oscilloscope measurement accuracy available today. New custom integrated circuits using a proprietary Indium Phosphide (InP) process and breakthrough packaging technology enable industryleading performance, including the:

- · Highest true analog bandwidth
- · Lowest oscilloscope noise floor
- · Lowest oscilloscope jitter measurement floor

Highest true-analog bandwidth- 32 GHz

The engineering of a high-performance real-time oscilloscope front end requires designing pre-amplifiers, triggering capability, and sampling technology. But putting it all together might be the toughest challenge. Using fine line microcircuit processes and relying extensively on years of experience with RF design, Agilent developed the front end multi-chip modules shown here for the Infiniium 90000 X-Series oscilloscopes. Packaging technology provides excellent high-frequency electrical properties along with superior heat dissipation. It enables the highest true analog bandwidth available today in real-time oscilloscopes.

Industry's lowest noise floor.

One of the keys to measurement accuracy at high bandwidths is minimizing the noise generated by the oscilloscope itself. Agilent utilizes a proprietary Indium Phosphide (InP) integrated circuit process in the design of the Infiniium 90000 X-Series oscilloscopes because other processes just can't deliver the necessary combination of highbandwidth and low noise. Not only does that mean you're purchasing the best tool today, but it also means you can count on technology leadership from Agilent in the future.

Apr 2010 9:46 ~ 2 1 the state ff £ ţŢ ſ ſ ţ H 20 ps/ ∿ ∿ <mark>1</mark> 0.0 s 101 T 3 mV • More (1 of 2) Hits 1.703 Mhits Peak 7.994 khits Delete Mean -630.77 as 109.208 fs Std Dev μ±1σ 68.6% 95.6% $\mu \pm 2\sigma$ μ±3σ 99.7%

The highest real-time scope measurement accuracy

Jitter measurement floor of less than 150 fs

How much better is our jitter measurement?

We made measurements on multiple sine waves from an Agilent signal generator. We compared the Agilent Infiniium 90000 X-Series scope to DSP boosted oscilloscopes from our competitor.

Industry's lowest real-time oscilloscope jitter measurement floor

Oscilloscope bandwidth allows signal rise times to be more accurately depicted. The oscilloscope noise floor directly impacts the y-axis voltage placement of each signal data point. The Infiniium 90000 X-Series scopes combine superiority in these characteristics with extremely low sample clock jitter (< 20 femptoseconds). This ensures the lowest possible contribution to jitter measurements from the scope itself so you're using your jitter budget on your design.

With up to 2 Gpts of memory, low frequency jitter components can be resolved in a single measurement.

Short-Term Jitter Comparison

The results show that the 90000 X-Series consistently makes significantly (up to 10x) lower jitter measurements than its competitor.

Industry's first 30 GHz oscilloscope probing system

4 0

ZL: 1.00 nl

10 GHz

1 Probe Input Impedance

1 GHz

1.00 nE

Help K

To take advantage of your investment in a high bandwidth oscilloscope, you must have a probing system that can deliver bandwidth to the probe tip. Agilent rises to the challenge of high speed signal reproduction with these probing innovations:

Channel

۲

•

ensfer Fun

More (1 of 2)

- InfiniiMax III high-frequency probes with automatic AC calibration (PrecisionProbe)
- The industry's first bandwidth upgradable probes
- · Fully-integrated probe amplifier s-parameter correction

InfiniiMax III Probes with PrecisionProbe software

The DSO X-Series oscilloscope has the industry's only probe AC calibration software (PrecisionProbe), providing AC calibration of your entire InfiniiMax probing system. Typically probe loading effects increase as the frequencies of your system increase. This causes measurement errors due to probe loading. PrecisionProbe automatically removes the effects of probe loading on your systems, without the need to create transfer functions via TDR or Vector signal analyzer. Unlike other products which use generic models, it provides 100% accuracy to the tip of the probe.

The InfiniiMax III 30 GHz probing system includes accessories to enable probing with a ZIF tip, browsing, or connecting to 2.92 mm inputs.

Model	Description
N2803A	30 GHz probe amp
N2802A	25 GHz probe amp
N2801A	20 GHz probe amp
N2800A	16 GHz probe amp

Industry's first 30 GHz oscilloscope probing system

Fully-integrated probe amplifier s-parameter correction

Each InfiniiMax III probe amplifier comes pre-packaged with its own customized characteristics via s-parameter files. The InfiniiMax III probing system and the 90000 X-Series communicate via an I²C bus. This communication allows the 90000 X-Series to download the customized s-parameter files from the InfiniiMax III probing amplifier to the scope for greater accuracy.

The InfiniiMax III probing system uses the same InP technology that enables high bandwidth and low noise oscilloscope measurements.

Industry's only bandwidth upgradable probes

Purchase the probing performance you need today with confidence that you have headroom for the future with Agilent's InfiniiMax III bandwidth upgradable probes. Upgrade to higher performance at a fraction of the cost of new probes as your needs evolve.

The industry's most comprehensive application-specific measurement software

To get the most out of your Agilent Infiniium 90000 X-Series oscilloscope, choose from a wide array of application specific software options that speed your measurement tasks including:

• A broad range of jitter, triggering, measurement, analysis and display tools

A broad range of jitter, trigger, measurement, analysis, and display tools

When time is of the essence you need your scope to acquire and present data in the most usable form so you can get to answers quickly.

The Agilent Infiniium 90000 X-Series oscilloscopes offer the industry's widest range of supporting software with an intuitive interface to simplify learning curves. We've highlighted some of our most popular tools here, and the complete list follows on the next pages.

Agilent's InfiniiSim waveform translation toolset provides efficient de-embedding of probe and circuit element loading, enables measurement translation from accessible probe points to other locations in the system, and simulates waveforms with channel models inserted. Combine measurements and models for accurate characterization of design performance, all done with hardware acceleration for fast update rates.

Not just a tool for the digital world

Infiniium built-in FFT allows users to quickly and easily analyze the frequency components of their signals. Both FFT magnitude and phase can be displayed and can be combined with other built-in math functions or MATLAB[®] based measurements. Standard windowing of Hanning, Flattop and Rectangular are supported along with cursor based power measurements. When more powerful frequency domain measurements are required, including modulation analysis, consider the Agilent 89601A Vector Signal Analyzer software.

- Pre-built compliance testing software based on the expertise of our engineers on the standards committees
- Support for emerging high speed serial buses including SAS 12G, FibreChannel, and PCIe[™] gen3.

Quickly characterize jitter and display histograms, measurement trending, and jitter spectrum.

The industry's most comprehensive application-specific measurement software

Pre-built compliance testing software with Agilent expertise

Choose from the industry's widest range of complete applications for compliance and margin testing for high speed serial buses, including SATA, SAS, PCI Express, Ethernet, USB, JEDEC and more. Agilent's measurement experts sit on the industry standards committees and help define compliance requirements. They ensure that our tools deliver to the standards. Set up wizards combined with intelligent test filtering give you confidence you're running the right tests. Comprehensive HTML reports with visual documentation and pass/fail results guarantee that critical information is retained on each test. Technicians can run complete and accurate testing on their own, freeing valuable engineering resources.

Support for proprietary and emerging high speed serial buses

Agilent engineers hold key positions within the governing bodies defining test requirements for interoperability on emerging high speed serial buses. We provide tools as quickly as possible on emerging standards.

User Defined Application software allows automated compliance testing on proprietary buses or while emerging test standards solidify.

Rapidly develop automated measurements for compliance testing with Agilent's User Defined Application software. This tool provides the framework you need to quickly program and automate any set of measurements with an interface similar to that provided in our standard compliance test software. Full control of other Agilent instrumentation is possible, along with automated HTML reporting capabilities

Applications are available today for:

- MIPI M-Phy
- MDDI
- GDDR5
- SAS 6G

The industry's most comprehensive application-specific measurement software: measurement, analysis and decode software packages

Trigger on and decode CAN, LIN and FlexRay serial packets

CAN. LIN and FlexRay triggering and decode (N28803A or Option 063 on new scope purchases)

Trigger on and view both protocol layer information and physical layer signal characteristics for CAN, LIN and FlexRay buses. Numerical decode values are automatically displayed and synchronized below the captured signal or seen in protocol viewer.

Hardware-based triggering for CAN and LIN means triggering reliably, even on the most infrequent events. FlexRay uses software-based protocol triggering.

This application works on all models and can use any combination of scope and logic acquisition channels.

For more information: www.agilent.com/find/N28803A

Conduct jitter analysis.

EZJIT analysis software (E2681A or option 002 on new scope purchases)

Quickly characterize and evaluate most commonly needed jitter measurements, including cycle-cycle, N-cycle, period, timeinterval, error, setup and hold time, histograms, measurement trending and jitter spectrum.

This application is supported on all models and is standard on DSA models.

For more information: www.agilent.com/find/EZJIT

The industry's most comprehensive application-specific measurement software: measurement, analysis and decode software packages

EZJIT Plus analysis software (N5400A or Option 004 on new scope purchases. To upgrade from EZJIT to EZJIT Plus, order N5401A.)

EZJIT Plus adds additional compliance views and an expanded measurement setup wizard to simplify and automate RJ/DJ separation for testing against industry standards.

This application is supported on all models and is standard on DSA models.

For more information: www.agilent.com/find/EZJITPlus

Analyze jitter plus RJ/DJ separation.

Recover embedded clocks with serial data analysis (SDA).

High-speed serial data analysis software (E2688A or Option 003 on new scope purchases)

Quickly validate signal integrity for high-speed serial interfaces with embedded clocks. Recover embedded clocks synchronized with the analog waveform view. Build and validate eye diagrams.

The SDA package also includes software-based bit-level triggering and decode for 8B/10B. This application is supported on all models and comes standard on DSA models.

For more information: www.agilent.com/find/SDA

The industry's most comprehensive application-specific measurement software: measurement, analysis and decode software packages

Trigger and view on-screen serial decode of I²C packets

Identify signal integrity issues with InfiniiScan Zone - Qualify triggering.

I^2C/SPI serial trigger and decode (N5391A or Option 007 on new scope purchases)

Given even futher insights with protocol decode capability. Quickly move between physical and protocol layer information using the time-correlated tracking marker. Display protocol content using waveform symbols and the industry's first multi-tab protocol viewer. The packets tab shows a high level view of the packet over time.

InfiniiScan event identification (N5415B or Option 009 on new scope purchases)

Rapidly trigger on complex events and identify signal integrity issues. This innovative software quickly scans through thousands of acquired waveform cycles and isolates anomalous signal behavior.

For more information: www.agilent.com/find/infiniiScan

The industry's most comprehensive application-specific measurement software: measurement, analysis and decode software packages

Model channel effects including reflection.

Rec Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Utilities Help 1.0c.2008 11:27 MM Image: Control Setup Trigger Measure Andryce Trigger Measure Andry

Reduce receiver errors by opening tightly shut eyes.

InfiniiSim waveform transformation toolset (N5465A or option 013, and 014 on new scope purchases)

Use the InfiniiSim toolset to combine measurements and models to view simulated scope measurement results at any location in your design. Import design models (s-parameters or transfer functions), acquire real-time scope data, and transform to measurement locations you need.

Model single element systems such as de-embedding or embedding a cable or fixture with the basic InfiniiSim toolset. Choose 'advanced' for more extensive modeling of complex systems such as multiple element and probed systems.

For more information: www.agilent.com/find/InfiniiSim

Infiniium serial data equalization (N5461A or Option 012 on new scope purchases)

Measure at the pin and use equalization to see a virtual eye on the other side of an equalizer. Model equalization techniques such as DFE, FFE, and CTLE.

For more information: www.agilent.com/find/SDE

The industry's most comprehensive application-specific measurement software: measurement, analysis and decode software packages

Control your applications remotely.

Image: Series oscilloscope to ensure version compatibility and so that your MATLAB softwarelicense is always available when you need it. For more information: www.agilent.com/find/matlab_oscilloscopes

MIPI D-phy trigger and decode (N8802A or Option 019 on new scope purchases)

MATLAB[®] data analysis software (Option 061 or 062 on

MATLAB is a data analysis software environment and scripting

language used by over 1,000,000 users in aerospace/defense,

automotive, communications, electronics, and other applica-

tions. MATLAB is now available directly from Agilent as in

instrument option with the purchase of your Agilent 90000-X

Series oscilloscope. Install MATLAB on your oscilloscope or

signals in 2-D or 3-D plots, automate measurements, or build

remote PC to make customized measurements, design and ap-

ply your own filters to oscilloscope signals, graphically visualize

test applications. Purchase MATLAB with your Agilent 90000-X

new scope purchases)

This application eliminates the need to manually decode bus traffic. Using data captured on the scope, the application lets you easily view the information sent over MIPI serial buses.

The application also enables software based protocol triggering.

For more information: www.agilent.com/find/N8802A

Trigger and view on-screen serial decode of I²C packets

The industry's most comprehensive application-specific measurement software: measurement, analysis and decode software packages

Trigger on and decode PCIe serial packets.

(BETA VERSION 2.80.9032) RefApp Test -- Reference Device File View Help Task Flow Set Up Select Tests Configure Connect Run Tests Results Html Report **Test Filter** Cust DIg GoodMCRVersion True Set Up Display All Tests User Comments Test Tree Marker Tests Select Tests C Multi-Trial Tests C TestSteps Tests Choose Device Address C Framework Tools Automate External Device: Option New Framework Features • Option1 C System Regression Tests C Option2 Connection Page Tests Option1 C Option3 C No. of Failed Test C Option4 C Conditional Steps Change filter 🔽 Checked by default Option A - Option A IsRemote | T Delete existing results (SELECT OR TYPE) -0 Tests Follow instructions to describe your test environment Connection: UNKNOWN

Control your applications remotely.

PCI Express[®] serial trigger and protocol viewer (N5463A or Option 017 on new scope purchases)

This application provides protocol-level triggering and viewing of a PCIe® lane. Quickly view packets, payload, header, and detail information. Powerful time-correlated views of waveform, symbol, character, link and transaction layer packet data down to the bit level make it easy to isolate communication faults to logic or analog sources.

This application is supported on all 4 GHz and greater models.

For more information:

www.agilent.com/find/90000_PCI_protocol_viewer

Remote programming interface (N5452A or Option 011 on new scope purchases)

Operate your Infiniium compliance and validation applications remotely using .NET languages.

For more information: www.agilent.com/find/RPI

The industry's most comprehensive application-specific measurement software: measurement, analysis and decode software packages

RS-232/UART serial decode and trigger (N5462A or Option 015 on new scope purchases)

This application eliminates the need to manually decode bus traffic. Using data captured on the scope channels, the application lets you easily view the information sent over an RS-232

Display real-time time-aligned decode of transmit and receive lines.

For more information: www.agilent.com/find/90000_RS-232

Trigger on and decode RS-232/UART transmission

	ile				Measure	Analyze	Utilities	Help					14 No	ov 2009 12	:10 /
Symbols Packets Paybad Header Symbols Packets Packets Packets Symbols Packets <	×	Ad		is stop	oped.	_									
Image: Second secon	×	Jr	1 On		2	On			On		4	On		6	0.0
Symbolic Packets Details If Payload If Header Image: Solution of the symbolic o		-1					_			_					
Symbolic Packets Details If Payload If Header Image: Solution of the symbolic o	/														
Symbole Padvets. Extraction SATA_XRDV SATA_XRDV SATA_XRDV SATA Symbole Padvets. Details Payload Header Image: Control of the symbole Image	+	(i	sh h [M	4 I IAM	M K MAR	的机物机	thin h	trimiti	intinti A	NIMU	4111 111	mhlt	1 111	MIMA	
Symbole Packets. Image: Strate Strate Strate Strat			111 114 14	14401	1 / N.M	DARIA		JAL VAL	FM L AN	. I NUM		M LI LI	W VIII	11111	Ш.
Symbole Packets. Image: Strate Strate Strate Strat	ý	-	III AM	140/14		UUNUN	UNES (S	HALLIN.	UNA III.	. TUMAN	WIN AND	1.444	IN AW	NUM 1 (•
Symbole Padvets. Extraction SATA_XRDV SATA_XRDV SATA_XRDV SATA Symbole Padvets. Details Payload Header Image: Control of the symbole Image	ľ		V LI UUV	WINT		ymm			WINN	1 M W	TWN, UT	W V VII	1	W W	U.
Symbole Padvets. Extraction SATA_XRDV SATA_XRDV SATA_XRDV SATA Symbole Padvets. Details Payload Header Image: Control of the symbole Image		+	1 4. 1.41		in Milli	I. I. Maria	111 A. A	114 11.4		el Artest	is no lti	1. 1 1.1	tio. In	with the	r
Symbolic Packets Details Payload Header C Index Time Details Payload Header C SATA_X_RDV SATA_X_RDV SATA_X_RDV SATA Index Time Details Payload Header C Display Forma Index Time Details R. RDV SATA_X_RDV SATA_X_RDV Display Forma Index Time Details R. RDV SATA SATA_X_RDV Display Forma Index Time Details R. RDV SATA_X_RDV Display Forma SATA_X_RDV Display Forma Index Time Details R. RDV SetUp	Ļ														
Symbols Packets Image: Control of the symbols Image: Control of the symbols <td< td=""><td>-</td><td>FIL.</td><td>DE 38</td><td>BE FA</td><td>P=SAT</td><td>A_SYNG</td><td>2. P=</td><td>SATA_S</td><td>MAC .</td><td>PESATA</td><td>X_RDY</td><td>P=SAT</td><td>A_X_R</td><td>DY SA</td><td>Τ.</td></td<>	-	FIL.	DE 38	BE FA	P=SAT	A_SYNG	2. P=	SATA_S	MAC .	PESATA	X_RDY	P=SAT	A_X_R	DY SA	Τ.
Index Time Data ™ indicates not descrambled data Ø Ø Ø Show Fields S31 -19.89024 ns S1VC S1VC Dsplot Sslot										SATA_	X_RDY	SATA	_X_RD	Y SA	
Index Time Data ™ indicates not descrambled data Description 531 -19.89024 ns SYNC Display Display </td <td></td>															
Index Time Data ™ indicates not descrambled data D 353 -10.89024 ns SYNC Display forma Display forma 353 -10.89024 ns SYNC Display forma Display forma 353 6.60144 ns X.ROV Display forma Display forma 353 0.203227 ns CONT Search Search 355 33.61003 ns 80-* Search Search 355 33.61003 ns RO* Search Search 356 3.60250 ns C2+* Search Search 357 40.30171 ns C2+* Sayse Help 358 30.31620 ns 68.* or Sayse 359 40.30271 ns C2+* Sayse Help 41 T Sayse T Sayse T	ſ														
Index Time Data ™ indicates not descrambled data D 353 -10.89024 ns SYNC Display forma Display forma 353 -10.89024 ns SYNC Display forma Display forma 353 6.60144 ns X.ROV Display forma Display forma 353 0.203227 ns CONT Search Search 355 33.61003 ns 80-* Search Search 355 33.61003 ns RO* Search Search 356 3.60250 ns C2+* Search Search 357 40.30171 ns C2+* Sayse Help 358 30.31620 ns 68.* or Sayse 359 40.30271 ns C2+* Sayse Help 41 T Sayse T Sayse T	ſ														
Index Time Data ™ indicates not descrambled data Description 531 -19.89024 ns SYNC Display Display </td <td></td> <td></td> <td>Symbols Pa</td> <td>ckets</td> <td>Detais</td> <td>Paybad</td> <td>Header</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td>			Symbols Pa	ckets	Detais	Paybad	Header								+
551 10.80024 frs SYVC 553 10.80024 frs X.RDY 553 6.561494 ns X.RDY 553 6.561494 ns X.RDY 555 33.61803 ns 80-* 555 33.61803 ns 80-* 557 40.30727 ns 22.4* 558 34.5521 ns 6.864 559 46.59701 ns 68-* 571 500.3146 ns B3-* 581 53.447 ns 14 10.8976 ns 10.976 ns 10.97 ms	Г							not decor	ambled d	ata				Chow E	_
Size -6.53 446 ns X. ROV Use of the second sec	2	- III			4 ns		marcates	Thot desci	unified a						
333 6.86194 ns X.ROY 533 6.86194 ns X.ROY 555 33.61800 ns 60.* 555 33.61800 ns 80.* 555 33.61800 ns 80.* 557 40.3012 ns C4** 558 43.6521 ns 62.4** 559 46.99701 ns 68** 41 50.34160 ns B3** 7 10.0976 ns 10.8976 ns 0	Ā														
State 20.2922 ns CONT State 20.2922 ns CONT State 33.61803 ns 8D-* State 33.61803 ns 8D-* State 36.9203 ns 76** State 36.903 ns 76** State 35.920 ns 0.2** State 55.9 46.99701 ns 68** State State Save Help Itelete Itelete Itelete Itelete Itelete All Tot nev No N Itelete 0.0 V T														Hex	*
555 33.6100 ns 80-* 555 33.6202 ns 76* 557 40.3017 ns 0.2** 558 34.6521 ns 62** 559 46.99701 ns 68** 60 50.34160 ns 83** 1 1 1 10.8976 ns 0	2	°III												Cohun	_
Signed and set of the set of th	~	-11												Setup.	
ore or z) s558 43.65210 ns C2+* s669* s60 50.34169 ns B3+* ↓ T			556	36,96250) ns	76+*								Search.	
ore ore ar2) S50 46.99701 ns 68+* S60 50.34169 ns 83+* ↓ T ↓ 000 233% H 7.01 ns/ ↓ 0 ↓ 10.8976 ns ↓ 0 ↓ 1000 ↓ ↓ 1	J	`	557	40.3071	7 ns	D2+*								_	_
iriz) isco 500 50.34169 ns 83+* itere Nu 1 → 000 2@@@ H Z01 ns/ 10.8976 ns 10.8976		- 1	558	43.65219	ns	C2+*								Save	_
of 2) 550 50.34169 ns B3+" ↓ T → → → → → → → → → → → → → → → → → → →	lore	e												Help	
	of :	2)	560			B3+*							1.0	Thep	_
ietee Ni I ↓				FD (000)	· · ·	30.8									
All T 😓 💽 🗐 🖓 🖗 🗎 7.01 ns/ 🗽 🔤 -10.8976 ns 🛛 4 0 🕨 📑 0.0 V 🚍 T	lat		•										2		
							104 1		10.00	76		1 6			1 14
Challen Challen					2 2 2	H	/.01 ns/		-10.89	76 ns	4 0 1		1 0.0	/	ţΠ.
		— Le							_			· · · ·	-	Constant of	

Trigger on and decode SAS/SATA serial packets.

SATA/SAS triggering and decode (N8801A or option 018 on new scope purchases)

Trigger on and view both protocol layer information and physical layer signal

characteristics for SATA 1.5 Gb/s, 3.0 Gb/s, and 6.0 Gb/s. Numerical decode values are automatically displayed and synchronizes below the capture signal or seen in protocol viewer.

For more information: www.agilent.com/find/N8801A

The industry's most comprehensive application-specific measurement software: measurement, analysis and decode software packages

Trigger on and decode USB packets.

Signal equalization using user-defined function.

USB serial trigger and protocol viewer (N5464A or Option 016 on new scope purchases)

Trigger on and quickly view USB 2.0 packets, payload, header and detail information. Powerful time-correlated views of waveform and symbol, to the bit level, make it easy to isolate communication faults.

For more information: www.agilent.com/find/90000_USB_protocol_viewer

User-defined function (N5430A or Option 010 on new scope purchases)

If we haven't provided exactly what you need, use the N5430A User Defined Function software to create it yourself. Develop your own math functions or filters using MATLAB. Your custom functionality is seamlessly integrated into the Infiniium 90000 menus and results are displayed on the scope screen. This requires MATLAB (available as Option 062) to be installed directly on the oscilloscope. Agilent is the only T&M manufacturer today that sells and supports MATLAB as its own product.

This application is supported on all models and requires MAT-LAB software (not included with UDF)

For more information: www.agilent.com/find/UDF

The industry's most comprehensive application-specific measurement software: compliance testing and validation software packages

Test DDR memory.

Full suite of DisplayPort source tests.

DDR1/DDR2/DDR3 compliance testing (U7233A/N5413A/ U7231A or Options 031/032/033 on new scope purchases)

Quickly and easily evaluate and characterize your memory designs. Automated testing based on JEDEC specifications saves time. The application also includes additional debug and compliance capabilities.

This application is supported on all models. However, the DDR technology you are using may dictate the minimal bandwidth required for your scope.

For more information: www.agilent.com/find/DDR

DisplayPort compliance test software (U7232A or Option 028 on new scope purchases)

Sets the benchmark for ease-of-use, and offers complete testing without compromise. The software guides the user sequentially through the tasks ensuring minimal setup error, executes the tests specified by the standard and conveys the test information through a convenient software generated report. The three modes of physical layer test allow for automated measurements based on the customizable configuration of compliance and characterization testing. To make the test signal connection, the Agilent W2641A DisplayPort test point access adaptor completes the DisplayPort source solution.

For more information: www.agilent.com/find/U7232A

The industry's most comprehensive application-specific measurement software: compliance testing and validation software packages

HDMI Electrical performance validation and compliance software (N5399A or Option 023 on new scope purchases)

Quickly verify and debug your high definition multi-media interface (HDMI) designs. The N1080A fixture provides access to the compliance points for the electrical measurements required for the transmitter compliance testing.

For more information: www.agilent.com/find/N5399A

Verify and debug your HDMI designs.

Automatically execute D-PHY electrical checklist tests for CSI and DSI architectures.

MIPI D-PHY Compliance test software (U7238A or Option 035 on new scope purchases)

Automatically execute D-PHY electrical checklist tests for CSI and DSI architectures. Displays the results in a flexible report format.

For more information: www.agilent.com/find/d-phy_compliance

The industry's most comprehensive application-specific measurement software: compliance testing and validation software packages

elect 1	ests Configure Connect Run Tests Results Huni Repo	n		
×	Agilent Technologies PCI Express	Test Report	Comp	rt Style oact Verb
	Overall Result: FAIL			
	Test Configur		u)	
	User Comments	addit Details		
	Device Type			
	Device ID	Device 1		
	Number of Lanes			
		5/28/2004 2:16:37 PM		
	Model Number			
	Serial Number			
	Infiniium SW Version	03.49.5002R		
Mai	Immary of Results			
Mai Wa	gin Thresholds ming <= 15 %	Spec Range	Measured Value	Margin
Mai Wa	gin Thresholds uning <= 15 % (iii.cm <= 0 %	Spec Range (399.68es to 400.12es	Measured Value	Margin 37.1 %
Mai Wa	yin Thresholds tring ⊂= 15 % itteat <= 0 % Test Name System Board Tx, Unit Interval			
Mar Wa Pas	gin Thresholds ming <= 15 % (filed <= 0 %	[399.08ps to 400.12ps	399.97ps	37.1 %
Mar Wa Pas	gin Thresbolds rning ← 15 % finat ← 0 % Test Mame System Board Tx, Unit Interval System Board Tx, Template Tests	[399.88ps to 400.12ps Zero Mask Failures	399.97ps 0	37.1 % N/A
Mar Wa Pas	sin Thresholds Inting c = 0.3 % C = 0.3 % System Board Tr., Unit Internal System Board Tr., Kedian to Max, Jater System Board Tr., Kedian to Max, Jater System Board Tr., Eye Width System Board Tr., Pach Offerential Output visitage	[399.08ps to 400.12ps Zero Mask Failures c= 108.50ps >= 183.00ps [0.2530V to 1.2000V]	399.97ps 0 52.50ps 316.01ps 0.9200∨	37.1 % N/A 51.6 %
Mar Wa Pas	gle Threebalds ming c 15 % c 0 38 System Doad Ts, Unit Interval System Doad Ts, Unit Interval System Doad Ts, Herdin to Max, Uter System Soud Ts, Herdin to Max, Uter System Soud Ts, Peak Otherestal Dutyd veltage Ts, Unit Isteral	[389.88ps to 400.12ps Zero Mask Failures <= 108.50ps >= 183.00ps [0.2530V to 1.2000V] [399.08ps to 400.12ps	399.97ps 0 52.50ps 316.01ps 0.9200V 400.05ps	37.1 % N/A 51.6 % 72.1 % 29.6 % 29.6 %
Mar Wa Pas	yin Threadwalds mining ⊂ 15 % ⊂ 0 1% System Doard Tx. Und Internal System Doard Tx. Immunian Traits System Doard Tx. Immunian Traits System Doard Tx. Payo Worth System Doard Tx. Payo Minin System Doard Tx. Payo Minina Tx., Unit Internal Tx., Temptine Tests	[399.08ps to 400.12ps Zero Mask Failures c= 108.50ps >= 183.00ps [0.2530V to 1.2000V] [399.00ps to 400.12ps Zero Mask Failures	399.97ps 0 52.50ps 316.01ps 0.9200V 400.05ps 0	37.1 % N/A 51.6 % 72.1 % 29.6 % 29.6 % N/A
Mar Wi Pas V	gle Threebalds ming c 15 % c 0 % feed Name System Doad Ts, Unit Interval System Doad Ts, Tenglata Tests System Doad Ts, Median to Max, Uter System Soud Ts, Peak Otherestal Dutput veltage Ts, Tengther Tests Ts, Tengther Tests Ts, Median to Max, Uter	[399.68ps to 400.12ps Zero Mask Failures <= 108.50ps >= 183.00po [0.2530V to 1.2000V] [399.00ps to 400.12ps Zero Mask Failures <= 60.00ps	399.97ps 0 52.50ps 316.01ps 0.9200V 400.05ps 0 48.80ps	37.1 % N/A 51.6 % 72.1 % 29.6 % 29.6 % N/A 18.7 %
	yin Threadwalds mining ⊂ 15 % ⊂ 0 % Test Maximum System Doard Tr. Unit Islams! System Doard Tr. Tampisian Tasts. System Doard Tr. Medianto Max. Iter System Doard Tr. Andenino Max. Iter System Doard Tr. Anden Max. Iter Tr. Unit Islams! Tr. Unit Islams! Tr. Unit Islams! Tr. Menine Tests Tr. Medianto Max. Iter Tr. Servi Meth	[399.68ps to 400.12ps Zero Mask Failures <= 108.50ps >= 183.00po [0.2530V to 1.2000V] [399.00ps to 400.12ps Zero Mask Failures <= 60.00ps >= 0.700UI	399.97 ps 0 52.50 ps 316.01 po 0.92007 400.05 ps 0 48.80 ps 0.794 UI	37.1 % N/A 51.6 % 29.6 % 29.6 % N/A 18.7 % 13.4 %
	In Threadalds Inning (= 15 %) (= 0 %) System Doad TL, Unit Ireaval System Doad TL, Tenglata Tests System Doad TL, Media to Max, Uter System Boad TL, Peak Differential Dutput withage TL, Tenglate Tests TL, Media to Max, Uter TL, Fenglate Tests TL, Fenglate Tests TL, Peak Differential Dutput voltage	[399.08ps to 400.12ps Zero Mask Failures <= 108.50ps >= 183.00po [0.2530/t to 1.2000V] (399.08ps to 400.12ps Zero Mask Failures <= 60.00ps >= 0.700UI [0.8000V to 1.2000V]	399.97 ps 0 52.50 ps 316.01 ps 0.9200 / 400.05 ps 0 48.80 ps 0.794 UI 0.9372 /	37.1 % N/A 51.6 % 72.1 % 29.6 % 29.6 % N/A 18.7 % 13.4 % 34.3 %
	yin Threadaids mining or 15 % or 0 % Test Maximum System Doard Tr. Unit Islams System Doard Tr. Unit Islams System Doard Tr. Hoghn to Max. Her System Doard Tr. Popol Dimensional Dudget without System Roard Tr. System Minister Tr., Unit Islams Tr., Template Tests Tr., Regin Minist Tr., Regin Minist Tr., Regin Minist Tr., Regin Minist	[399.08ps to 400.12ps Zero Mask Failures <= 108.50ps >= 108.00p (0.2530V to 1.2000V) (0.2530V to 1.2000V) (0.2530V to 1.2000V) Zero Mask Failures <= 60.00ps >= 0.700UI (0.6000V to 1.2000V) >= 60.00ps	399.97 ps 0 52.50 ps 316.01 ps 0.9200 v 400.05 ps 0 48.80 ps 0.794 UI 0.9372 v 205.47 ps	37.1 % N/A 51.6 % 29.6 % 29.6 % N/A 18.7 % 13.4 % 34.3 % 310.9 %
	yla Threshaldsi ming (= 15 %) (= 0 %) System Boad TL, Unit Iteraval System Boad TL, Tengitar Tests System Boad TL, Tengitar Tests System Boad TL, Peak Differential Output withou TL, Tengitar Tests TL, Median to Mau Itter TL, Tengitar Tests TL, Reshall State TL, Reshall State TL, Reshall State TL, Reshall State TL, Billion State TL, Reshall State TL, Billion State TL, Reshall State	[399.08ps to 400.12ps Zero Mask Failures c= 108.50ps = 183.00ps [0.2530V to 1.2000V] [399.08ps to 400.12ps Zero Mask Failures c= 60.00ps >= 0.700UI [0.8000V to 1.2000V] >= 50.00ps [4.0dB to -3.0dB]	399.97 ps 0 52.50 ps 316.01 po 9.920 tv 400.05 ps 0 48.80 ps 0.794 U1 0.937 2 v 205.47 ps -2.7 dB	37.1 % N/A 51.6 % 72.1 % 29.6 % 29.6 % N/A 18.7 % 13.4 % 34.3 % 310.9 % 28.6 %
Mail Will Pass	yin Threadaids mining of 15 % of 0 % Test Meet System Doard Tr, Und Istemal System Doard Tr, Und Istemal System Doard Tr, Howhon M Max, Ster System Sourd Tr, Howhon M Max, Ster System Sourd Tr, Loyd Differential Origin whop Tr, Und Istemal Tr, Howitz Tests Tr, Meet Tests Tr, Read Taline Tr, Read Taline Tr, Read Taline Tr, Read Taline	[399.08ps to 400.12ps Zero Mask Failures = 108.50ps >= 183.00ps [399.00ps to 1.2000V] [399.00ps to 400.12ps Zero Mask Failures = 86.00ps = 0.700UI [0.6000V to 1.2000V] >= 50.00ps [4.0dB to -3.0dB] <= 20.0mV	399.97ps 0 52.50ps 316.01pn 0.9200V 400.05ps 0 48.80ps 0.794UI 0.9372V 205.47ps -2.7dB 16.1mV	37.1 % N/A 51.6 % 72.1 % 29.6 % 29.6 % N/A 18.7 % 13.4 % 34.3 % 310.9 % 28.6 %
	yle Threebaldsi ming (= 15 %) (= 0 %) System Boad TL, Unit treaval System Boad TL, Tenyitat Tests System Boad TL, Tenyitat Tests System Boad TL, Media to Max. Uter System Boad TL, Peak Differential Dutyot witage TL, Tenyitat Tests TL, Media to Max. Uter TL, Boad Max. Uter TL, Rest Max. Max. Uter TL, Rest Max. Max. Uter TL, Rest Max. Max. Max. Max. Max. TL, Rest Max. Max. Max. Max. Max. TL, Rest Max.	[39:08ps to 400.12ps 2ero Mask Falures c= 105.50ps >= 183.00ps 10.2530V to 1.2000V 10.2530V to 1.2000V 10.2530V to 1.2000V 2ero Mask Falures c= 60.00ps >= 0.7000I 0.6000V to 1.2000V >= 50.00ps [4.048 to -3.048] c= 20.0mV 0.0000V to 3.6000V	399.97ps 0 52.50ps 316.01ps 0.9200V 400.05ps 0 48.80ps 0.794U1 0.9372V 205.47ps -2.74B 16.1mV 1.0380V	37.1 % N/A 51.6 % 72.1 % 29.6 % 29.6 % N/A 18.7 % 13.4 % 34.3 % 310.9 % 28.8 %
Mail Will Pass J J J J J J J J J J J J J J J J J J	yin Threadaids mining of 15 % of 0 % Test Meet System Doard Tr, Und Istemal System Doard Tr, Und Istemal System Doard Tr, Howhon M Max, Ster System Sourd Tr, Howhon M Max, Ster System Sourd Tr, Loyd Differential Origin whop Tr, Und Istemal Tr, Howitz Tests Tr, Meet Tests Tr, Read Taline Tr, Read Taline Tr, Read Taline Tr, Read Taline	[399.08ps to 400.12ps Zero Mask Failures = 108.50ps >= 183.00ps [399.00ps to 1.2000V] [399.00ps to 400.12ps Zero Mask Failures = 86.00ps = 0.700UI [0.6000V to 1.2000V] >= 50.00ps [4.0dB to -3.0dB] <= 20.0mV	399.97ps 0 52.50ps 316.01pn 0.9200V 400.05ps 0 48.80ps 0.794UI 0.9372V 205.47ps -2.7dB 16.1mV	37.1 % N/A 51.6 % 72.1 % 29.6 % 29.6 % N/A 18.7 % 13.4 % 34.3 % 310.9 % 28.6 %

PCI Express[®] Electrical performance validation and compliance software (N5393B or Option 022 on new scope purchases)

Provides fast and easy way to verify and debug your PCI Express designs. Allows you to automatically execute PCI Express electrical checklist tests, and displays the results in a flexible report format. Ensures that your Gen2 measurements will have absolute consistency with measurements made using the PCI-SIG's[®] standalone Sigtest software.

For more information: www.agilent.com/find/N5293B

Quickly verify and debug your PCI Express[®] designs

Quickly validate and debug your SAS designs

Serial attached SCSI (SAS) electrical performance validation and compliance software (N5412A or Option 027 on new scope purchases)

Serial attached SCSI (SAS) electrical performance validation and compliance software for Infiniium oscilloscopes provides you with a fast and easy way to validate and debug your SAS 1.5-Gbps (SAS 150) and 3.0-Gbps (SAS 300) silicon, host bus adapter, initiator, high-density disk drive or enclosure backplane. The SAS electrical test software allows you to automatically execute SAS electrical checklist tests at each of the IT, CT, IR and CR interface points, and displays the results in a flexible report format. In addition to the measurement data, the report provides a margin analysis that shows how closely your device passed or failed each test.

For more information: www.agilent.com/find/N5412A

The industry's most comprehensive application-specific measurement software: compliance testing and validation software packages

Ag	ilent T			est Repo		
			Test Configu	ration Details		
			Device De	scription		
		Gene	eration	Gen II		
		Inter	face	1		
		Devid	се Туре	Drive		
			Test Sess	ion Details		
		Infini	ium SW Version	01.40.0004		
		Infini	iium Model Numb	er DSO90804A		
		Infini	iium Serial Numb	er MY47350010		
		Appl	ication SW Versio			
		Last	Test Date	2/5/2009 9:34:0	3 AM	
gin Thre	sholds	sults				
Warning Critical	sholds < 2 % < 0 %					
Warning Critical s # Failer	sholds < 2 % < 0 %	Test Name		Vorst Actual	Worst Margin	
Warning Critical s # Failer 0	sholds < 2 % < 0 % d # Trials 1	Test Name Channel Speed, FBaud & Unit V	terval 1	66.6660ps	6.1 %	166.6083ps <= VALUE <= 167.5584
Warning Critical s # Failer 0 0	sholds < 2 % < 0 % 4 # Trials 1	Test Name Channel Speed, FBaud & Unit Ir Frequency Long-Term Stability	nterval 1	66.6660ps ppm	6.1 % 49.4 %	166.6083ps <= VALUE <= 167.5584 -350ppm <= VALUE <= 350ppm
Warning Critical s # Failer 0 0 0	sholds < 2 % < 0 % 4 # Trials 1 1 1	Test Name Channel Speed, FBaud & Unit k Frequency Long-Term Stabity VdiffTX. Maximum TX Different	iterva) 1 4 al Output Voltage 7	66.6660ps Ippm 732mV	6.1 % 49.4 % 18.7 %	166.6083ps <= VALUE <= 167.5584 -350ppm <= VALUE <= 350ppm VALUE <= 900mV
Warning Critical s # Failer 0 0 0 0 0	sholds < 2 % < 0 % 4 Trials 1 1 1 1	Test Name Channel Speed. FBaud & Unit in Frequency Long-Term Stability VoldTC: Llassimm TX Different TX Risetime	iterva) 1 4 al Output Voltage 7 5	166.6660ps Ippm 132mV 17.55ps	6.1 % 49.4 % 18.7 % 29.9 %	166.6083ps <= VALUE <= 167.5584 -350ppm <= VALUE <= 350ppm VALUE <= 900mV 33.00ps <= VALUE <= 68.00ps
Varning Critical S # Failer 0 0 0 0 0 0 0	sholds < 2 % < 0 % 4 # Trials 1 1 1 1 1	Test Name Channel Speed, FBaud & Unit Ir Frequency Long-Term Stability VdiffTX, Maximum TX Different TX Fiscime TX Fastime	nterval 1 4 Ial Outout Voitage 7 5 5	166.6660ps 19pm 132mV 57.55ps 55.51ps	6.1 % 49.4 % 18.7 % 29.9 % 35.7 %	166.6083ps <= VALUE <= 167.5584 -350ppm <= VALUE <= 350ppm VALUE <= 900mV 33.00ps <= VALUE <= 68.00ps 33.00ps <= VALUE <= 68.00ps
Warning Critical S # Failer 0 0 0 0 0 0 0 0	sholds < 2 % < 0 % 4 # Trials 1 1 1 1 1 6	Test Name Channel Speed - FBaud & Unit in Freguency Long-Term Stability VorifTX, Maximum TX Different TX Restime TX-Fashine TX-Fashine	tlerval 1 4 ial Output Voltage 7 5 5	166.6660ps Appm 132mV 57.55ps 55.51ps 10.3ps	6.1 % 49.4 % 18.7 % 29.9 % 35.7 % 48.5 %	166.6083ps <= VALUE <= 167.5584 -350ppm <= VALUE <= 350ppm VALUE <= 900mV 33.00ps <= VALUE <= 68.00ps 33.00ps <= VALUE <= 68.00ps VALUE <= 20.0ps
Warning Critical s # Failer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sholds < 2 % < 0 % 4 # Trials 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Test Name Channel Speed, FBaud & Unit N Frequency Long-Term Shahity ValiTX, Maximum X Different TX: Enscrime TX: Enscrime TX: Differential Share MTP TX: Offerential Share WTP	tlerval 1 ial Outout Voltage 7 5 5 8 8 8	66.6660ps Japan 132mV 57.55ps 55.51ps 10.3ps 3.7ps	6.1 % 49.4 % 18.7 % 29.9 % 35.7 % 48.5 % 56.5 %	166.608309 <= VALUE <= 167.5584 -350ppm <= VALUE <= 350ppm VALUE <= 900mV 33.00ps <= VALUE <= 68.00ps 33.00ps <= VALUE <= 68.00ps VALUE <= 20.0ps VALUE <= 20.0ps
Warning Critical s # Failer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sholds < 2 % < 0 % 4 # Trials 1 1 1 1 6 1 1	Test Name Channel Speed, FBaud & Unit I Frequency Long-Tern Stability VotiffX, Maximum TX Offerent TX, Blastime TX, Faltme TX, Offerential Skew HFTP TX, Offerential Skew HFTP TX, AC Common Midde Voltage z	tlerval 1 ial Outout Voltage 7 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	666.6660ps Jappm 132mV 57.55ps 55.51ps 10.3ps 3.7ps 27.67000dBmV(pk)	6.1 % 49.4 % 18.7 % 29.9 % 35.7 % 48.5 % 56.5 % 6.4 %	188.8033ps = VALUE <= 167.5584 -350ppm = VALUE <= 350ppm VALUE <= 900mV 33.00ps <= VALUE <= 68.00ps 33.00ps <= VALUE <= 68.00ps VALUE <= 20.0ps VALUE <= 20.0ps VALUE <= -26.00000BmV(pk)
Warning Critical 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sholds < 2 % < 0 % 4 # Trials 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Test Name Channel Speed. FBaud. & Unit In Frequency Long. Term Stability VolfTX: Maximum TX Different TX Faitnes TX Faitnes TX Offerential Slowy WFTP TX ACCommon Mode Voltage a LA C Common Mode Voltage a	aterval 1 isi Output Voltage 7 5 5 5 5 5 5 5 5 5 5 5 5 5	66.6660ps kppm 32mV 57.55ps 55.51ps 0.3ps 3.7ps 27.67000dBmV(pk) 50.67000dBmV(pk)	6.1 % 49.4 % 18.7 % 29.9 % 35.7 % 48.5 % 56.5 % 6.4 % 68.9 %	168.8083ps ↔ VALUE ↔ 167.584 -350pm ↔ VALUE ↔ 350ppm VALUE ↔ 980mV 33.00ps ↔ VALUE ↔ 68.00ps 33.00ps ↔ VALUE ↔ 68.00ps VALUE ↔ 20.0ps VALUE ↔ 20.0ps VALUE ↔ 28.000004BmV(pk) VALUE ↔ -30.000004BmV(pk)
Warning Critical 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sholds < 2 % < 0 % 4 # Trials 1 1 1 1 6 1 1	Test Name Channel Speed, FBaud & Unit I Frequency Long-Tern Stability VotiffX, Maximum TX Offerent TX, Blastime TX, Faltme TX, Offerential Skew HFTP TX, Offerential Skew HFTP TX, AC Common Midde Voltage z	tierval 1 al Outout Voitace 7 5 5 4 8 at FFT3Ghz - at FFT5Ghz - TF Defined 1	66.6660ps 4ppm 132mV 17.55ps 10.3ps 1.7ps 27.67000dBmV(pk) 50.67000dBmV(pk) 126.00mUI	6.1 % 49.4 % 18.7 % 29.9 % 35.7 % 48.5 % 56.5 % 6.4 %	166.8083ps ↔ VALUE ↔ 167.5584 -350ppm ↔ VALUE ↔ 360ppm VALUE ↔ 560 00H 33.00ps ↔ VALUE ↔ 68.00ps 33.00ps ↔ VALUE ↔ 68.00ps VALUE ↔ 20.0ps VALUE ↔ 20.0ps VALUE ← 28.0000dBmV(pk) VALUE ↔ 30.0000dBmV(pk) VALUE ↔ 30.000mU
Warning Critical 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sholds < 2 % < 0 % 4 # Trials 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Test Name Channel Speed. FBaud. & Unit In Frequency Long. Term Stability VolfTX: Maximum TX Different TX Faitnes TX Faitnes TX Offerential Slowy WFTP TX ACCommon Mode Voltage a LA C Common Mode Voltage a	tierval 1 al Outout Voltace 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	66.6660ps kppm 32mV 57.55ps 55.51ps 0.3ps 3.7ps 27.67000dBmV(pk) 50.67000dBmV(pk)	6.1 % 49.4 % 18.7 % 29.9 % 35.7 % 48.5 % 56.5 % 6.4 % 68.9 %	168.8083ps ↔ VALUE ↔ 167.584 -350pm ↔ VALUE ↔ 350ppm VALUE ↔ 980mV 33.00ps ↔ VALUE ↔ 68.00ps 33.00ps ↔ VALUE ↔ 68.00ps VALUE ↔ 20.0ps VALUE ↔ 20.0ps VALUE ↔ 28.000004BmV(pk) VALUE ↔ -30.000004BmV(pk)
Varning Critical 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sholds < 2 % < 0 % 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Test Name Channel Speed, FBaud & Urit It Frequency Loos-Term Stability Varitty, Varioum Xt Different TX Brackins TX-Eatime TX-Eatime TX-Differential Skew HFTP TX-AC Common Mode Versian TX-AC Common Mode Versian TX-AC Common Mode Versian R Leefers CC, Colex Vito Bas, J	tterval 1 iai Outout Voitae 7 iai Outout Voitae 7 s s s s st FFT3Ghz - at FFT3Ghz - at FFT3Ghz - s st FFT3Ghz - s th FFT6Ghz - s th Defined 1 iai, ITF Defined 4	66.8660ps (ppm 32mV 55.51ps 55.51ps 0.3ps 27.670004BmV(pk) 28.00mUl 18.46.00mUl 119.40mUl	6.1 % 49.4 % 18.7 % 29.9 % 35.7 % 48.5 % 56.5 % 6.4 % 6.8.9 % 30.0 % 23.9 % 10.0 %	166.6083ps ← VALUE ← 167.5584 -350ppm × VALUE ← 360ppm VALUE ← 500mV 33.00ps ← VALUE ← 68.00ps 33.00ps ← VALUE ← 68.00ps VALUE ← 20.0ps VALUE ← 20.0ps VALUE ← 20.0ps VALUE ← 20.0000dBmV(pk) VALUE ← 160.000mUl VALUE ← 466.00mUl VALUE ← 466.00mUl
Varning Critical 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sholds < 2 % < 0 % 4 Trials 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1	Test Name Channel Speed, Flavid & Unit F Research Long The Babby Votiffs, Maximum TX Different TX Palling TX Differential Show MTP TX Differential Show MTP TX AC Common Midde Visitar a Risefred CC Cost To Stat. J Ta Actor CC Scient To Stat. J	terval 1 iai Outout Voitae 7 iai Outout Voitae 7 s s s s s s s s s s s s s s s s s s s	66.6600ps 4ppm 32mV 57.55ps 55.51ps 10.3ps 1.7ps 27.67000dBmV(pk) 50.67000dBmV(pk) 128.00mUI	6.1 % 49.4 % 18.7 % 29.9 % 35.7 % 48.5 % 56.5 % 6.4 % 68.9 % 30.0 % 23.9 %	LB6 6083ps ↔ VALUE ← 356ptm -360ptm ↔ VALUE ← 350ptm VALUE ← 3000mV 33.00ps ↔ VALUE ← 68.00ps 33.00ps ↔ VALUE ← 68.00ps 33.00ps ↔ VALUE ← 88.00ps VALUE ← 82.00ps VALUE ← 82.0000dBmV(pk) VALUE ← 30.0000dBmV(pk) VALUE ← 480.00mUI VALUE ← 68.00mUI

Simplify the validation of SATA designs

SATA 6G Compliance Test Software (N5411B or Option 038 on new scope purchases)

Rapidly validate and debug your SATA 1.5Gb/s (Gen 1), 3.0Gb/s (Gen2) and 6.0Gb/s (Gen3) silicon, host bus adapter, port multiplier, high-density disk drive, solid-state disk drive or optical disk drive. Provides automated compliance test support for the i (internal), m(eSATA) and x(SAS attachment) interfaces points, and displays the results in a flexible report format.

For more information: www.agilent.com/find/n5411b

Set Up Selec	t Tests Configure Connect Run Tests Results	
0	a prese the set of the set of the	Instructions for Connection: Far End Transmitter Eye
7 tests will be run. 1 physical	Connect to US	SB 3.0 receiver reference plane (SMP Connection) at TP1
setup will be used.	Step	Notes
Follow these instructions to start testing	1. Connect your Device Under Test to the USB 3.0 test future.	Cociliancege C Soft Reference Reference College C Control Control C C Control C C C Control C C C C C C C C C C C C C C C C C C C
	2. Connect two phase-matched SMP cables to the receiver	Ensure correct polarity • Connect D+to Channel 1 • Connect D-to Channel 3
	3. Ensure the Transmitter is transmitting the Compliance Test Pattern CPO at the proper de- emphasis level.	

Validate and debug your USB 3.0 silicon, host, hub or device

USB 3.0 Compliance Test Software (U7243A or Option 041 on new scope purchases

Provides industry leading automated test support for USB 3.0 products and displays the test results in a comprehensive test report. For best measurement accuracy use the Agilent U7242A USB 3.0 transmitter and receiver test fixtures. Agilent's USB 3.0 test solution is designed from the ground up with the needs of the test engineer in mind.

For more information: www.agilent.com/find/USB3

The industry's most comprehensive application-specific measurement software: compliance testing and validation software packages

Quickly automate oscilloscope measurements.

Automatically execute 10GBASE-T Ethernet physical-layer (PHY) electrical tests

User-definable application (N5467A or Option 040 on new scope purchases)

Rapidly develop your own automated measurements and tests. This application provides the framework you need to quickly program and automate any single or set of measurements the oscilloscope can make. The application also provides full control of other Agilent instruments and HTML reporting capabilities.

For more information: www.agilent.com/find/UDA

10GBASE-T Ethernet electrical conformance application for Infiniium oscilloscopes (U7236A or Option 036 on new scope purchases)

Takes care of the tedious task of instrument control and configures the oscilloscope, spectrum analyzer, or vector network analyzer as needed by each 10GBASE-T test to provide rapid, accurate, and repeatable test execution.

For more information: www.agilent.com/find/10gbase-t

Agilent Infiniium Portfolio

Agilent's Infiniium lineup includes bandwidths from 600 MHz to 32 GHz. Use the following selection guide to determine which best matches your specific needs.

Oscilloscope	9000 Series	90000 Series	90000-X Series
Туре	Real Time	Real Time	Real Time
Bandwidth	600 MHz to 4 GHz	2.5 GHz to 13 GHz	16 GHz to 32 GHz
Sampling Rate (2 ch/4 ch)	20/10 GSa/s	40/40 GSa/s	80/40 GSa/s
Memory Depth	Up to 512 Mpts	Up to 1 Gpt	Up to 2 Gpts
Size (H x W x D)	12.9" x 16.8" x 9" 33cm x 43cm x 23cm	11.1″ x 17″ x 19.9″ 28cm x 43cm x 51cm	10.5″x16.75″x18.7″ 27cm x 43cm x 48cm
Precision Probe	NO	NO	YES
De-embedding	YES	YES	YES
Data sheet	5990-3746EN	5989-7819EN	5990-5271EN

Configure your high performance real-time oscilloscope solution today

Get the most out of your oscilloscope investment by choosing options and software to speed your most common tasks. Configure your Infiniium X-Series oscilloscope in three easy steps. Use option numbers when ordering at time of purchase. Use model numbers to add to an existing scope.

1. Choose your oscilloscope, memory and options

Mainframe:

Oscilloscopes	Description	
DSAX93204A	32 GHz Signal Analyzer*	
DS0X93204A	32 GHz Digital Signal Oscilloscope	
DSAX92804A	28 GHz Signal Analyzer*	
DS0X92804A	28 GHz Digital Signal Oscilloscope	
DSAX92504A	25 GHz Signal Analyzer*	
DS0X92504A	25 GHz Digital Oscilloscope	
DSAX92004A	20 GHz Signal Analyzer*	
DS0X92004A	20 GHz Digital Oscilloscope	
DSAX91604A	16 GHz Signal Analyzer*	
DS0X91604A	16 GHz Digital Oscilloscope	

All models come with power cord, keyboard, mouse, stylus, calibration cable, wrench and coax adapter.

*DSA models come with 20 Mpts memory, EZJIT, EZJIT+, Noise Reduction, and Serial Data Analyisis standard.

Memory:

Options	
DSOX90000A-020	
DSOX90000A-050	
DSOX90000A-100	
DS0X90000A-200	
DSOX90000A-500	
DS0X90000A-01G	
DS0X90000A-02G	
	DSOX90000A-020 DSOX90000A-050 DSOX90000A-100 DSOX90000A-200 DSOX90000A-500 DSOX90000A-01G

10 M memory standard, add option to increase to desired capacity

Options:

Description	Options	Model number
ANSI Z540 Compliant calibration	DSOX90000-A6J	
DVD RW	DSOX90000-820	N5473A
GPIB Card-interface	DSOX90000-805	82350B
PCI Express card-interface	DSOX90000-823	N4866A
Performance verification de-skew fixture	DSOX90000-OC-PROBES	N5443A
Rack mount kit option	DSOX90000-1CM	N5470A
Removable hard drive	DSOX90000-801	N5474A

Configure your high performance real-time oscilloscope solution today

2. Choose your probes and accessories

Description	Oscilloscopes
30 GHz probe amp	N2803A
25 GHz probe amp	N2802A
20 GHz probe amp	N2801A
16 GHz probe amp	N2800A
ZIF probe head	N5439A
Browser (hand held) probe head	N5445A
Solder-in probe head	N5441A
3.5 mm/2.92 mm probe head	N5444A
450 Ω ZIF tip replacement (set of 5)	N5440A
250 Ω ZIF tip replacement (set of 5)	N5447A
Browser tip replacement (set of 5)	N5446A
PV/deskew kit	N5443A
Auto probe adapter	N5442A
Sampling scope adapter	N5447A
Flexible cable set add on 2.92 mm	N5448A
High impedance adapter	N5449A

3. Choose your measurement-specific application software

Measurement, Analysis and Decode Software Packages

Description	Product number	Model number
CAN/FlexRay decode	DSOX90000-063	N8803A
EZJIT jitter analysis software	DSOX90000-002	E2681A
EZJIT Plus jitter analysis software	DSOX90000-004	N5400A
High-Speed SDA and clock recovery	DSOX90000-003	E2688A
I ² C/SPI Decode	DSOX90000-007	N5391A
InfiniiScan software triggering	DSOX90000-009	N5415A
InfiniiSim basic signal de-embedding	DSOX90000-013	N5465A-001
InfiniiSim advanced signal de-embedding	DSOX90000-014	N5465A-002
Infiniium serial data equalization	DSOX90000-012	N5461A
MATLAB - Standard digital analysis package	DSOX90000-061	
MATLAB - Basic digital analysis package	DSOX90000-062	
MIPI D-PHY protocol	DSOX90000-019	N8802A
PCI-Express protocol	DSOX90000-017	N5463A
Remote programming interface	DSOX90000-011	N5452A
RS-232/UART decode	DSOX90000-015	N5462A
SATA/SAS protocol	DSOX90000-018	N8801A
USB protocol	DSOX90000-016	N5464A
User-defined function	DSOX90000-010	N5430A

Choose your application-specific software packages (see pages 12 to 19) for details.

Configure your high performance real-time oscilloscope solution today

Compliance Testing and Validation Software Packages

Description	Product Number	Model number
DDR1 validation application	DSOX90000A-031	U7233A
DDR2 validation application	DSOX90000A-032	N5413A
DDR3 up to 1660 MHz validation application	DSOX90000A-033	U7231A
DisplayPort compliance application	DSOX90000A-028	U7232A
HDMI compliance application	DSOX90000A-023	N5399A
MIPI D-PHY compliance application	DSOX90000A-035	U7238A
PCI EXPRESS compliance application	DS0X90000A-022	N5393B
SAS compliance application	DSOX90000A-027	
SATA 6Gb/s Compliance	DSOX90000A-038	N5411B
USB 3.0 Compliance Software	DSOX90000A-041	U7243A
User Defined Application	DSOX90000A-040	N5467A
10GBASE-T Automated Test Application	DSOX90000A-036	U7236A

Choose your application-specific software packages (see pages 20 to 24) for details.

Performance characteristics

Vertical

Input channels	Four						
Analog bandwidth (–3 dB)*,	91604A	92004A	92504A	92804A	93204A		
2 channel	16 GHz	20 GHz	25 GHz	28 GHz	32 GHz		
4 channel	16 GHz	16 GHz	16 GHz	16 GHz	16 GHz		
Rise time/fall time ¹	91604A	92004A	92504A	92804A	93204A		
10 - 90%	28.5	20	17.5	14.4	12.5		
20 - 80%	21.5	15	13	11	9		
Input impedance	50 Ω, ± 3%						
Sensitivity ³	1 mV/div to 1 V/div						
Input coupling	DC						
Vertical resolution ²	8 bits, \geq 12	8 bits, \geq 12 bits with averaging					
Channel to channel isolation	DC to 3 GHz	: 60dB (≥ 1000:1)					
(any two channels with		iHz: 40 dB (≥ 100	:1)				
equal V/div settings)	8 GHz to BV	V: 35dB (≥ 56:1)					
DC gain accuracy*	± 2% of full	scale at full reso	lution channel sc	ale (± 2.5% for 5r	nV/div)		
Maximum input voltage*	± 5 V						
Offset range	Vertical sensitivity 0 mV/div to \geq 40 mV/div > 40 mV/div to \geq 75 mV/div > 75 mV/div to \geq 130 mV/div > 130 mV/div to \geq 240 mV/div > 240 mV/div			Available offset ± 0.4 V ± 0.9 V ± 1.6 V ± 3.0 V ± 4.0 V	t		
Offset accuracy	\leq 3.5 V: \pm (2% of channel offset + 1% of full scale) + 1 mV $>$ 3.5 V: \pm (2% of channel offset + 1% of full scale)						
Dynamic range	± 4 div from	center screen					
DC voltage measurement accuracy	Dual cursor: ± [(DC gain accuracy) + (resolution)] Single cursor: ± [(DC gain accuracy) + (offset accuracy) + (resolution/2)]						
RMS noise floor (scope only)							
Volts/div (mVrms)	91604A	92004A	92504A	92804A	93204A		
10 mV	0.348	0.426	0.496	0.534	0.597		
50 mV	1.34	1.53	1.76	1.862	2.03		
100 mV	2.63	3.02	3.39	3.62	3.975		
1 V	26.65	30.05	34.15	36.57	39.92		

* Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm up period, and ± 5° C from annual calibration temperature

3. Full scale is defined as 8 vertical divisions. Magnification is used below 10mV/div. Below 10 mV/div, full-scale is defined as 40 mV/div. The major scale settings are 5mV, 10mV, 20mV, 50mV, 100mV, 200mV, 500mV, and 1V.

2. Vertical resolution for 8 bits = 0.4% of full scale, for 12 bits = 0.024% of full scale

1. Calculated from the bandwidth

Infinitum DSO-X 90000A Series Oscilloscopes Performance characteristics

Horizontal

Main timebase range	2 ps/div to 20 s/div real-time
Main timebase delay range	200 s to -200 s real-time
Zoom timebase range	1 ps/div to current main time scale setting
Channel deskew	± 1 ms range, 10 fs resolution
Time scale accuracy*	absolute, aging
Delta-time measurement accuracy Absolute, averaging disabled	
Absolute, >- 256 averages	
Standard deviation, averaging disabled	
Standard deviation, >- 256 averages	
Jitter Measurement Floor	150 fs

Infiniium DSO-X 90000A Series Oscilloscopes Performance characteristics

Acquisition

Maximum real-time sample rate	91604A 92004A 92504A 92804a 93204A	
(2 channels)	80 GSa/s 80 GSa/s 80 GSa/s 80 GSa/s 80 GSa/s	
(4 Channels)	40 GSa/s 40 GSa/s 40 GSa/s 40 GSa/s 40 GSa/s	
Memory Depth per Channel		
Standard	10 Mpts on 4 channels	20 Mpts on 2 channels
Option 020	20 Mpts on 4 channels (standard on DSA models)	40 Mpts on 2 channels
Option 050	50 Mpts on 4 channels	100 Mpts on 2 channels
Option 100	100 Mpts on 4 channels	200 Mpts on 2 channels
Option 200	200 Mpts on 4 channels	400 Mpts on 2 channels
Option 500	500 Mpts on 4 channels	1 Gpt on 2 channels
Option 01G	1 Gpts on 4 channels	1 Gpt on 2 channels
Option 02G	2 Gpts on 4 channels	2 Gpts on 2 channels

Maxium acquired time at highest real time resolution

Real-Time Resolution	40 Gsa/s	80 Gsa/s
Standard	0.25 mS	0.25 mS
Option 020	0.5 mS	0.5 mS
Option 050	1.25 mS	1.25 mS
Option 100 M	2.5 mS	2.5 mS
Option 200 M	5 mS	5 mS
Option 500 M	12.5 mS	12.5 mS
Option 01G	25 mS	12.5 mS
Option 02G	50 mS	25 mS

Data Transfer Speed

· · · · · · · · · · · · · · · · · · ·					
PCIe x4	1 k	1 M	1 G		
Msa/s (Word)	TBD				
Msa/s (Byte)	TBD				
Gigabit Ethernet					
Msa/s (Word)	TBD				
Msa/s (Byte)	TBD				
USB 2.0 hi speed (device)					
Msa/s (Word)	TBD				
Msa/s (Byte)	TBD				

Sampling Modes

Real-Time	Successive single shot acquisitions
Real-Time with Averaging	Selectable from 2 to 65534
Real-Time with Peak Detect	80 GSa/s in half channel mode, 40 GSa/s in full channel mode
Real-Time with Hi Resolution	Real-time boxcar averaging reduces random noise and increases resolution

Performance characteristics

Sampling model (continued)	
Segmented memory	Captures bursting signals at max sample rate without consuming memory during periods of inactivity Number of segments (Up to 524,288 with option 026) Maximum time between triggers is 562,950 seconds Re-arm time: 4.5µs
	Maximum memory depth: Up to 4 Gpts in 1/2 channel mode with option 026
Filters	
Sin(x)/x Interpolation	On/off selectable FIR digital filter. Digital Signal Processing adds points between aquired data points to enhance measurement accuracy and waveform display
Hardware Trigger	
Sensitivity	Internal low Internal high Auxiliary
Edge Trigger Bandwidth	
Minimum Pulse Width Trigger	
Hardware	
Software (InfiniiScan)	
Level Range	
Internal Auxillary	\pm 4 div from center screen or \pm 4 Volts, whichvever is smallest
Auxiliary	\pm 5 V, also limit input signal to \pm 5V
Sweep Modes	
Display jitter (displayed trigger jitter)	
Trigger sources	Channel 1, Channel 2, Channel 3, Channel 4, aux, and line
Trigger Modes	
Edge	Triggers on a specified slope (rising, falling or alternating between rising and falling) and voltage level on any channel or auxiliary trigger
Edge Transition	Trigger on rising or falling edges that cross two voltage levels in > or < the amount of time specified. Edge transition setting from 250 ps.
Edge then Edge (time)	The trigger is qualified by an edge. After a specified time delay between 10 ns to 10 s, a rising or falling edg on any one selected input will generate the trigger
Edge then Edge (Event)	The trigger is qualified by an edge. After a specified delay between 1 to 16,000,000 rising or falling edges, another rising or falling edge on any one selected input will generate the trigger.
Glitch	Triggers on glitches narrower than the other pulses in your waveform by specifying a width less than your narrowest pulse and a polarity. Triggers on glitches as narrow as 125 ps. Glitch range settings: < 250 ps to 10 s.
Line	Triggers on the line voltage powering the oscilloscope
Pulse Width	Trigger on a pulse that is wider or narrower than the other pulses in your waveform by specifying a pulse width and a polarity. Triggers on pulse widths as narrow as 125 ps. Pulse width range settings 250 ps to 10 s. Trigger point can be "end of pulse" or "time out".
Runt	Triggers on a pulse that crosses one threshold but fails to cross a second threshold before crossing the firs again. Can be time qualified with minimum setting of 250 ps.

Hardware Trigger (continued)

Timeout	Trigger when a channel stays high, low, or unchanged for too long. Timeout setting: from 250 ps to 10 s.
Pattern/pulse range	Triggers when a specified logical combination of the channels is entered, exited, present for a specified period of time or is within a specified time range or times out. Each channel can have a value of High (H), Low (L) or Don't care (X).
State	Pattern trigger clocked by the rising, falling or alternating between rising and falling edge of one channel
Window	Triggers on an event associated with a window defined by two-user adjustable thresholds. Event can be window "entered," "exited," "inside (time qualified)," or "outside (time qualified)" voltage range. Trigger point can be "cross window boundary" or "time out." Time qualify range: from 250 ps to 10 s.
Video	Triggers from negative sync composite video, field 1, field 2, or alternating fields for interlaced systems, any field, specific line, or any line for interlaced or non-interlaced systems. Supports NTSC, PAL-M (525/60), PAL, SECAM (625/50), EDTV (480p/60), EDTV (576p/50), HDTV (720p/60), HDTV (720p/50), HDTV (1080i/60), HDTV (1080i/60), HDTV (1080i/60), HDTV (1080p/20), HDTV (1080p/25), HDTV (1080p/24), and user-defined formats.
Trigger Sequences	Three stage trigger sequences including two-stage hardware (Find event (A) and Trigger event (B)) and one-stage InfiniiScan software trigger. Supports all hardware trigger modes except "edge then edge" and "video," and all InfiniiScan software trigger modes. Supports "delay (by time)" and "reset (by time or event)" between two hardware sequences. The minimum latency between "find event (A)" and "trigger event (B)" is 3 ns.
Trigger Qualification AND Qualifier	Single or multiple channels may be logically qualified with any other trigger mode
Trigger Holdoff Range	100nS to 10s
Trigger Actions	Specify an action to occur and the frequency of the action when a trigger condition occurs. Actions include e-mail on trigger and execute "multipurpose" user setting.
Software trigger (requires Infini	iScan event identification software – Option 009)
Trigger Modes	
Zone Qualify	Software triggers on the user defined zones on screen. Zones can be specified as either "must intersect" or "must not intersect." Up to eight zones can be defined across multiple channels.
Generic Serial	Software triggers on NRZ-encoded data up to 8.0 Gbps, up to 80-bit pattern. Support multiple clock data recovery methods including constant frequency, 1st-order PLL, 2nd-order PLL, explicit clock, explicit 1st-order PLL, explicit 2nd-order PLL, Fibre Channel, FlexRay receiver, FlexRay transmitter (requires E2688A except for the constant frequency clock data recovery mode).
Measurement Limit	Software triggers on the results of the measurement values. For example, when the "pulse width" measurement is turned on, InfiniiScan measurement software trigger triggers on a glitch as narrow as 75 ps When the "time interval error (TIE)" is measured, InfiniiScan can trigger on a specific TIE value
Non-monotonic edge	Software triggers on the non-monotonic edge. The non-monotonic edge is specified by setting a hysteresis value.

Performance characteristics

Maximum measurement update rate	> 50,000 measurement/sec (one measurement turned on) > 250,000 measurement/sec/measurement (ten measurements turned on)		
Measurement Modes	Standard, Measure All Edges mode		
Waveform Measurements Voltage	Peak to peak, minimum, maximum, average, RMS, amplitude, base, top, overshoot, preshoot, upper, middle, lower		
Time Mixed	Rise time, fall time, period, frequency, positive width, negative width, duty cycle, burst width, Tmin, Tmax, Tvolt, setup time (requires Option 002 or 004, standard on DSA models), hold time (requires Option 002 or 004, standard on DSA models), channel-to-channel delta time, channel-to-channel phase Area, slew rate, crossing point		
Frequency Domain	FFT frequency, FFT magnitude, FFT delta frequency, FFT delta magnitude		
Level Qualification	Any channels that are not involved in a measurement can be used to level-qualify all timing measurements		
Eye-diagram measurements	Eye height, eye width, eye jitter, crossing percentage, Q factor, and duty-cycle distortion		
Jitter analysis measurements	Requires Option 002 (or E2681A) or 004 (or N5400A). Standard on DSA Series.		
Clock			
Data			
Timing			
Statistics	Displays the current, mean, minimum, maximum, range (max-min), standard deviation, number of measurements value for the displayed automatic measurements		
Histograms			
Source	Waveform or measurement		
Orientation	Vertical (for timing and jitter measurements) or horizontal (noise and amplitude change) modes, regions are defined using waveform markers		
Measurements	Mean, standard deviation, mean ± 1, 2, and 3 sigma, median, mode, peak-to-peak, min, max, total hits, peak (area of most hits), X scale hits, and X offset hits		
Mask Testing	Allows pass/fail testing to user-defined or Agilent-supplied waveform templates. Automask lets you create a mask template from a captured waveform and define a tolerance range in time/voltage or screen divi- sions. Test modes (run until) include test forever, test to specified time or event limit, and stop on failure. Executes "multipurpose" user setting on failure. "Unfold real time eye" feature will allow individual bit errors to be observed by unfolding a real time eye when clock recovery is on. Communications mask test kit option provides a set of ITU-T G.703, ANSI T1.102, and IEEE 802.3 industry-standard masks for compliance testing.		
Waveform Math			
Number of Functions	Four		
Hardware Accelerated Math	Differential and Common Mode		
Operations	Absolute value, add, average, Butterworth9, common mode, differentiate, divide, FFT magnitude, FFT phase, FIR9, high pass filter, integrate, invert, LFE9, low pass filter (4th-order Bessel Thompson filter), magnify, max, min, multiply, RT Eye9, smoothing, SqrtSumOfSquare9, square, square root, subtract, versus, and optional user defined function (Option 010)		
FFT			
Frequency Range	DC to 40 GHz (at 80 GSa/s) or 20 GHz (at 40 GSa/s)		
Frequency Resolution	Sample rate/memory depth = resolution		
Window Modes	Hanning, flattop, rectangular		

Performance characteristics

Measurement modes	
Automatic measurements	Measure menu access to all measurements, five measurements can be displayed simultaneously
Multipurpose	Front-panel button activates five pre-selected or five user-defined automatic measurements
Drag-and-drop measurement toolbar	Measurement toolbar with common measurement icons that can be dragged and dropped onto the displayed waveforms
Snapshot	Takes 29 snap shot measurements (customizable).
Marker modes	Manual markers, track waveform data, track measurements

Display

Diopidy	
Display	12.1-inch color XGA TFT-LCD with touch screen
Intensity grayscale	256-level intensity-graded display
Resolution XGA	1024 pixels horizontally x 768 pixels vertically
Annotation	Up to 12 labels, with up to 100 characters each, can be inserted into the waveform area
Grids	One, two or four waveform grids, each with 8 bit vertical resolution
Waveform styles	Connected dots, dots, infinite persistence, color graded infinite persistence. Includes up to 256 levels of intensity-graded waveforms.
Waveform Update Rate	
Maximum Update Rate	> 400,000 waveforms per second (when in the segment memory mode)

Computer system and peripherals, I/O ports

Computer system and peripherals	
Operating system	Windows® XP Pro
CPU	Intel® Core 2 Duo 3.06 GHz
PC system memory	4GB DDR2
Drives	≥ 250-GB internal hard drive Optional removable hard drive (Option 801) Optional USB external DVD-RW drive (Option 820)
Peripherals	Logitech optical USB mouse, compact USB keyboard and stylus supplied. All Infiniium models support any Windows-compatible input device with a serial, PS/2 or USB interface.
File types	
Waveforms	Compressed internal format (*.wfm (200 Mpts)), comma-separated values (*.csv (2 Gpts)), tab separated values (*.tsv (2 Gpts)), public binary format (.bin (500 Mpts)), Y value files (*.txt (2 Gpts)), hierarchal data file (*.hf5 (2 Gpts))
Images	BMP, PNG, TIFF, GIF or JPEG

Performance characteristics

I/O ports	PCIe x4, GPIB, RS-232 (serial), Parallel, PS/2, USB 2.0 hi-speed (host), USB 2.0 hi-speed (device), Dual-monitor video output, Auxiliary output, Trigger output, Time base reference output
General Characteristics	
Temperature	Operating: 5 °C to + 40 °C; Non-operating: -40°C to +70 °C
Vibration	For operating random the 0.3 g(rms) should be 0.21 g(rms), for non-operating random the 2.41 g(rms) should be 2.0 g(rms) and for swept sins the (0.75g) should be (0.50g).
Power	100 - 240 VAC at 50/60 Hz; maximum input power 800 Watts
Weight	45.1 lbs (20.5 kg)
Dimensions	10.5″x16.75″x18.7″ (27cm x 43cm x 48cm)
Safety	Meets IEC 61010-1 +A2, CSA certified to C22.2 No.1010.1, self-certified to UL 3111

Agilent Technologies Oscilloscopes Multiple form factors from 20 MHz to >90 GHz | Industry leading specs | Powerful applications

Agilent Technologies Oscilloscopes

Multiple form factors from 20 MHz to >90 GHz | Industry leading specs | Powerful applications

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

🕘 Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

LXI

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

 $\label{eq:windows} \ensuremath{^{\textcircled{\mbox{$\mathbb 8$}$}}}\ \mbox{is a U.S. registered trademark} of Microsoft Corporation.$

 $\mbox{MATLAB}^{\ensuremath{\mathbb{B}}}$ is a U.S. registered trademark of The Math Works, Inc.

PCI Express[®], PCIe and PCI-SIG are registered trademarks of PCI-SIG

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment through-out its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements. For information regarding self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to

www.agilent.com/find/removealldoubt

www.agilent.com

www.agilent.com/find/90000X-series

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe & Middle East

Austria	43 (0) 1 360 277 1571		
Belgium	32 (0) 2 404 93 40		
Denmark	45 70 13 15 15		
Finland	358 (0) 10 855 2100		
France	0825 010 700*		
	*0.125 €/minute		
Germany	49 (0) 7031 464 6333		
Ireland	1890 924 204		
Israel	972-3-9288-504/544		
Italy	39 02 92 60 8484		
Netherlands	31 (0) 20 547 2111		
Spain	34 (91) 631 3300		
Sweden	0200-88 22 55		
Switzerland	0800 80 53 53		
United Kingdom	44 (0) 118 9276201		
Other European Countries:			

www.agilent.com/find/contactus

Product specifications and descriptions in this document subject to change without notice.

October 1, 2009

© Agilent Technologies, Inc. 2010 Printed in USA, May 10, 2010 5990-5271EN

Agilent Technologies